Bayesian Networks: a Combined Tuning Heuristic
نویسنده
چکیده
One of the issues in tuning an output probability of a Bayesian network by changing multiple parameters is the relative amount of the individual parameter changes. In an existing heuristic parameters are tied such that their changes induce locally a maximal change of the tuned probability. This heuristic, however, may reduce the attainable values of the tuned probability considerably. In another existing heuristic parameters are tied such that they simultaneously change in the entire interval 〈0, 1〉. The tuning range of this heuristic will in general be larger then the tuning range of the locally optimal heuristic. Disadvantage, however, is that knowledge of the local optimal change is not exploited. In this paper a heuristic is proposed that is locally optimal, yet covers the larger tuning range of the second heuristic. Preliminary experiments show that this heuristic is a promising alternative.
منابع مشابه
Developing an Integrated Simulation Model of Bayesian-networks to Estimate the Completion Cost of a Project under Risk: Case Study on Phase 13 of South Pars Gas Field Development Projects
Objective: The aim of this paper is to propose a new approach to assess the aggregated impact of risks on the completion cost of a construction project. Such an aggregated impact includes the main impacts of risks as well as the impacts of interactions caused by dependencies among them. Methods: In this study, Monte Carlo simulation and Bayesian Networks methods are combined to present a frame...
متن کاملConstrained Bayesian Optimization with Particle Swarms for Safe Adaptive Controller Tuning
Tuning controller parameters is a recurring and time-consuming problem in control. This is especially true in the field of adaptive control, where good performance is typically only achieved after significant tuning. Recently, it has been shown that constrained Bayesian optimization is a promising approach to automate the tuning process without risking system failures during the optimization pr...
متن کاملA Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters
Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...
متن کاملEfficient and Robust Parameter Tuning for Heuristic Algorithms
The main advantage of heuristic or metaheuristic algorithms compared to exact optimization methods is their ability in handling large-scale instances within a reasonable time, albeit at the expense of losing a guarantee for achieving the optimal solution. Therefore, metaheuristic techniques are appropriate choices for solving NP-hard problems to near optimality. Since the parameters of heuristi...
متن کاملTuning Computer Systems with Structured Bayesian Optimization
✓ ✗ ✗ Makes use of programmer's understanding Profiling tools to see runtime properties Needs a lot of programmer time Solution is specific to the environment and input Current Approach I: Manually tune the system Tuning Computer Systems with Structured Bayesian Optimization Valentin Dalibard, Eiko Yoneki Cambridge University Computer Laboratory [email protected] Example Problem: B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016